→ Обыкновенные дроби. Доли, обыкновенные дроби, определения, обозначения, примеры, действия с дробями Где находится числитель и знаменатель у дроби

Обыкновенные дроби. Доли, обыкновенные дроби, определения, обозначения, примеры, действия с дробями Где находится числитель и знаменатель у дроби

Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Дроби являются частью поля рациональных чисел. По способу записи дроби делятся на 2 формата: обыкновенные вида и десятичные .

Числитель дроби — число, показывающее количество взятых долей (находится в верхней части дроби - над чертой). Знаменатель дроби — число, показывающее, на сколько долей разделена единица (находится под чертой - в нижней части). , в свою очередь делятся на: правильные и неправильные , смешанные и составные тесно связаны с единицами измерения. 1 метр содержит в себе 100 см. Что означает, что 1 м разделён на 100 равных долей. Таким образом, 1 см = 1/100 м (один сантиметр равен одной сотой метра).

или 3/5 (три пятых), здесь 3 — числитель, 5 — знаменатель. Если числитель меньше знаменателя, то дробь меньше единицы и называется правильной :

Если числитель равен знаменателю, дробь равна единице. Если числитель больше знаменателя, дробь больше единицы. В обоих последних случаях дробь называется неправильной :

Чтобы выделить наибольшее целое число , содержащееся в неправильной дроби, нужно разделить числитель на знаменатель. Если деление выполняется без остатка, то взятая неправильная дробь равна частному:

Если деление выполняется с остатком, то (неполное) частное дает искомое целое число, остаток же становится числителем дробной части; знаменатель дробной части остается прежним.

Число, содержащее целую и дробную части, называется смешанным . Дробная часть смешанного числа может быть и неправильной дробью . Тогда можно из дробной части выделить наибольшее целое число и представить смешанное число в таком виде, чтобы дробная часть стала правильной дробью (или вовсе исчезла).

Дроби мы постоянно используем в жизни. Например, когда едим торт с друзьями. Торт можно разделить на 8 равных частей или на 8 долей . Доля – это равная часть от чего-то целого. Четыре друга съели по кусочку торта. Четыре взяли из восьми кусочков можно записать математически в виде обыкновенной дроби \(\frac{4}{8}\), читается дробь “четыре восьмых” или “четыре деленное на восемь”. Обыкновенную дробь еще называют простой дробью .

Дробная черта заменяет деление:
\(4 \div 8 = \frac{4}{8}\)
Это мы записали доли в дробях. В буквенном виде будет так:
\(\bf m \div n = \frac{m}{n}\)

4 – числитель или делимое, находится вверху над дробной чертой и показывает сколько частей или долей из общего было взято.
8 – знаменатель или делитель, находится внизу под дробной чертой и показывает общее количество частей или долей.

Если мы приглядимся внимательно, то увидим, что друзья съели половину торта или одну часть из двух. Запишем в виде обыкновенной дроби \(\frac{1}{2}\), читается “одна вторая”.

Рассмотрим еще пример:
Имеется квадрат. Квадрат разделили на 5 равных частей. Две части закрасили. Запишите дробь для закрашенных частей? Запишите дробь для не закрашенных частей?

Две части закрасили, а всего частей пять, поэтому дробь будет иметь вид \(\frac{2}{5}\), читается дробь “две пятых”.
Три части не закрасили, всего частей пять, поэтому дробь запишем так \(\frac{3}{5}\), читается дробь “три пятых”.

Разделим квадрат на более мелкие квадраты и запишем дроби, для закрашенных и не закрашенных частей.

Закрашенных 6 частей, а всего 25 частей. Получаем дробь \(\frac{6}{25}\) , читается дробь “шесть двадцать пятых”.
Не закрашенных 19 частей, а всего 25 частей. Получаем дробь \(\frac{19}{25}\), читается дробь “девятнадцать двадцать пятых”.

Закрашенных 4 части, а всего 25 частей. Получаем дробь \(\frac{4}{25}\), читается дробь “четыре двадцать пятых”.
Не закрашенных 21 частей, а всего 25 частей. Получаем дробь \(\frac{21}{25}\), читается дробь “двадцать один двадцать пятых”.

Любое натуральное число можно представить в виде дроби . Например:

\(5 = \frac{5}{1}\)
\(\bf m = \frac{m}{1}\)

Любое число делиться на единицу, поэтому это число можно представить в виде дроби.

Вопросы по теме “обыкновенные дроби”:
Что такое доля?
Ответ: доля – это равная часть от чего-то целого.

Что показывает знаменатель?
Ответ: знаменатель показывает на сколько всего частей или долей поделено.

Что показывает числитель?
Ответ: числитель показывает сколько частей или долей было взято.

Дорога составляла 100м. Миша прошел 31м. Запишите дробью выражение сколько прошел Миша?
Ответ:\(\frac{31}{100}\)

Что такое обыкновенная дробь?
Ответ: обыкновенная дробь – это отношение числителя к знаменателю, где числитель меньше знаменателя. Пример, обыкновенных дробей \(\frac{1}{4}, \frac{3}{7}, \frac{5}{13}, \frac{9}{11}…\)

Как перевести натуральное число в обыкновенную дробь?
Ответ: любое число можно записать в виде дроби, например, \(5 = \frac{5}{1}\)

Задача №1:
Купили 2кг 700г дыни. Мише отрезали \(\frac{2}{9}\) дыни. Чему равна масса отрезанного кусочка? Сколько граммов дыни осталось?

Решение:
Переведем килограммы в граммы.
2кг = 2000г
2000г + 700г = 2700г всего весит дыня.

Мише отрезали \(\frac{2}{9}\) дыни. В знаменателе стоит число 9, значит на 9 частей разделили дыню.
2700: 9 =300г масса одного кусочка.
В числители стоит число 2, значит надо Мише дать два кусочка.
300 + 300 = 600г или 300 ⋅ 2 = 600г столько дыни съел Миша.

Чтобы найти какая масса дыни осталась нужно вычесть от общей массы дыни съеденную массу.
2700 — 600 = 2100г осталось дыни.

Класс: 6

Цель: сформировать представление об элементах дроби: числителе, знаменателе, дробной черте.

Задачи:

  1. Изучить элементы обыкновенной дроби.
  2. Развивать внимание, глазомер.
  3. Воспитывать аккуратность.

Оборудование:

  • таблица «Обыкновенные дроби»;
  • набор «Доли и дроби»;
  • индивидуальные карточки.

Ход урока

I. Организационный момент.

Какое число? Месяц? Год? Какой закончился месяц? Какое сейчас время года? Запись в тетради даты.

II. Устная работа.

1. Как разделить 3 яблока на 2 человека? 5 яблок на 4 человека? 2 яблока на 3 человека?

Объясните, как получились эти дроби.

3. Работа с кругом, разделенным на 4 части. Назовите четверть, две четверти. Как называются 2 и 4, 1 и 4?

III. Изучение нового материала.

1 – числитель, 4 – знаменатель.
2 – числитель, 4 – знаменатель.

Это тема нашего урока (запись темы урока в тетрадь).

  • Числитель, знаменатель, дробная черта.

А теперь посмотрим, как получить другие дроби. Строим на доске и в тетради полоски. Разделить полоски на 4 части и закрасить 2 части. Какая получилась дробь?

Назовите знаменатель. Что показывает знаменатель?

Назовите числитель. Что показывает числитель.

IV. Физкультурная минутка (проходит в сопровождении музыки).

V. Продолжение работы по теме.

Запись в тетради:

3 – числитель;
___ – дробная черта;
5 – знаменатель.

Обращаем внимание на правильное написание слов «числитель», «Знаменатель», «дробная черта» на доске и в таблице «Обыкновенные дроби».

(Используется табличка.)

Разбираем правило о числителе и знаменателе.

Дробная черта – знак деления.

Учащимся раздаются индивидуальные карточки с правилами о числителе и знаменателе. Учащиеся читают правило, затем повторяют вслух хором.

VI. Закрепление.

Работа по индивидуальным карточкам.

Закрасить:

  • 1группа – 3 клеточки.
  • 2 группа – 4 клеточки.
  • 3 группа – 6 клеточек.
  • 4 группа – 7 клеточек.

Построить в тетради такой же прямоугольник и отметить дробь. Кто быстрее справится с заданием, тот работает у доски с комплектом «Доли и дроби».

Показать: .

VII. Итог урока.

  1. Что изучили?
  2. Что показывает знаменатель?
  3. Где он записывается?
  4. Что показывает числитель?
  5. Где он записывается?
  6. Выставляются оценки учащимся.

VIII. Домашнее задание. Выучить 2 правила по карточкам.

Дробь. Числитель и знаменатель дроби

Определение 1 . Дробью называют одну или несколько одинаковых долей (частей) предмета или некоторой величины.

Дробь записывают при помощи двух натуральных чисел, одно из которых стоит над горизонтальной чертой, а второе - под нею.

Определение 2 . Число, стоящее над чертой, называют числителем дроби . Число, стоящее под чертой, называют знаменателем дроби .Числитель и знаменатель называют членами дроби .

Знаменатель дроби показывает, на сколько одинаковых долей мы делим предмет или величину, а числитель дроби показывает, сколько таких долей взято .

Например, дробь

у которой числитель равен 8 , а знаменатель равен 17 , означает, что предмет или величину мы делим на 17 равных долей (частей) и берем 8 таких долей.

Пример 1 . В классе 25 учеников, из которых посещают театральный кружок. Сколько учеников ходят в театральный кружок?

Решение . Для решения примера нужно 25 учеников разделить на 5 частей и взять 2 таких части.

Ответ . 10 учеников.

Пример 2 . Турист в первый день похода прошел намеченного маршрута, а во второй день - оставшиеся 24 километра. Сколько всего километров прошел турист?

Решение . Весь маршрут разделен на 7 равных частей, 3 из которых турист прошел в первый день (рис. 1).

1 день 1 день 1 день 2 день 2 день 2 день 2 день
1
день
1
день
1
день
2
день
2
день
2
день
2
день

Из рисунка 1 видно, что 24 километра составляют 4 из 7 частей маршрута. Таким образом, 1 часть маршрута равна

24: 4 = 6 (км) ,

а весь маршрут равен

Ответ . 42 километра.

Замечание. Если не указано, от какого предмета или какой величины берется дробь, то считают, что дробь взята от числа 1 .

Термин дробь имеет синонимы: простая дробь , обыкновенная дробь , рациональная дробь , дробное число .

Правильные и неправильные дроби. Смешанные числа

Определение 3 . Если у дроби числитель меньше знаменателя, то ее называют правильной дробью . В противном случае – неправильной дробью .

Из этого определения, в частности, вытекает, что правильная дробь меньше единицы, а неправильная - больше единицы или равна единице.

Пример 3 . - правильная дробь, и - неправильные дроби.

Неправильную дробь всегда можно представить в виде суммы целого числа и правильной дроби. Эту операцию называют выделением целой части из неправильной дроби и осуществляют при помощи деления с остатком числителя неправильной дроби на знаменатель.

Пример 4 .

,

Число является примером смешанного числа . Целое число 2 и правильную дробь называют целой и дробной частью смешанного числа соответственно.

Любое смешанное число всегда можно обратить в неправильную дробь, например,

Основное свойство дроби, сокращение дробей, несократимая дробь

Основным свойством дроби называют следующее

Утверждение . Дробь превращается в равную дробь, если её числитель и знаменатель умножить или разделить на одно и то же число.

Определение 4 . Операцию, при которой числитель и знаменатель дроби делят на одно и то же число, называют сокращением дроби .

Пример 4 .

.

Рассмотрение данной темы мы начнем с изучения понятия доли в целом, которое даст нам более полное понимание смысла обыкновенной дроби. Дадим основные термины и их определение, изучим тему в геометрическом толковании, т.е. на координатной прямой, а также определим список основных действий с дробями.

Доли целого

Представим некий предмет, состоящий из нескольких, совершенно равных частей. Например, это может быть апельсин, состоящий из нескольких одинаковых долек.

Определение 1

Доля целого или доля – это каждая из равных частей, составляющих целый предмет.

Очевидно, что доли могут быть разные. Чтобы наглядно пояснить это утверждение, представим два яблока, одно из которых разрезано на две равные части, а второе – на четыре. Ясно, что размеры получившихся долей у разных яблок будут различаться.

Доли имеют свои названия, которые зависят от количества долей, составляющих целый предмет. Если предмет имеет две доли, то каждая из них будет определяться как одна вторая доля этого предмета; когда предмет состоит из трех долей, то каждая из них – одна третья и так далее.

Определение 2

Половина – одна вторая доля предмета.

Треть – одна третья доля предмета.

Четверть – одна четвертая доля предмета.

Чтобы сократить запись, ввели следующие обозначения долей: половина - 1 2 или 1 / 2 ; треть - 1 3 или 1 / 3 ; одна четвертая доля - 1 4 или 1 / 4 и так далее. Записи с горизонтальной чертой используются чаще.

Понятие доли естественно расширяется с предметов на величины. Так, можно использовать для измерения небольших предметов доли метра (треть или одна сотая), как одной из единиц измерения длины. Аналогичным образом можно применить доли других величин.

Обыкновенные дроби, определение и примеры

Обыкновенные дробиприменяются для описания количества долей. Рассмотрим простой пример, который приблизит нас к определению обыкновенной дроби.

Представим апельсин, состоящий из 12 долек. Каждая доля тогда будет – одна двенадцатая или 1 / 12 . Две доли – 2 / 12 ; три доли – 3 / 12 и т.д. Все 12 долей или целое число будет выглядеть так: 12 / 12 . Каждая из используемых в примере записей является примером обыкновенной дроби.

Определение 3

Обыкновенная дробь – это запись вида m n или m / n , где m и n являются любыми натуральными числами.

Согласно данному определению, примерами обыкновенных дробей могут быть записи: 4 / 9 , 11 34 , 917 54 . А такие записи: 11 5 , 1 , 9 4 , 3 не являются обыкновенными дробями.

Числитель и знаменатель

Определение 4

Числителем обыкновенной дроби m n или m / n является натуральное число m .

Знаменателем обыкновенной дроби m n или m / n является натуральное число n .

Т.е. числитель – число, расположенное сверху над чертой обыкновенной дроби (или слева от наклонной черты), а знаменатель – число, расположенное под чертой (справа от наклонной черты).

Какой же смысл несут в себе числитель и знаменатель? Знаменатель обыкновенной дроби указывает на то, из скольких долей состоит один предмет, а числитель дает нам информацию о том, каково рассматриваемое количество таких долей. К примеру, обыкновенная дробь 7 54 указывает нам на то, что некий предмет состоит из 54 долей, и для рассмотрения мы взяли 7 таких долей.

Натуральное число как дробь со знаменателем 1

Знаменатель обыкновенной дроби может быть равен единице. В таком случае возможно говорить, что рассматриваемый предмет (величина) неделим, являет собой нечто целое. Числитель в подобной дроби укажет, какое количество таких предметов взято, т.е. обыкновенная дробь вида m 1 имеет смысл натурального числа m . Это утверждение служит обоснованием равенства m 1 = m .

Запишем последнее равенство так: m = m 1 . Оно даст нам возможность любое натуральное число использовать в виде обыкновенной дроби. К примеру, число 74 – это обыкновенная дробь вида 74 1 .

Определение 5

Любое натуральное число m возможно записать в виде обыкновенной дроби, где знаменатель – единица: m 1 .

В свою очередь, любая обыкновенная дробь вида m 1 может быть представлена натуральным числом m .

Черта дроби как знак деления

Использованное выше представление данного предмета как n долей является не чем иным, как делением на n равных частей. Когда предмет разделен на n частей, мы имеем возможность разделить его поровну между n людьми – каждый получит свою долю.

В случае, когда мы изначально имеем m одинаковых предметов (каждый разделен на n частей), то и эти m предметов возможно поровну разделить между n людьми, дав каждому из них по одной доле от каждого из m предметов. При этом у каждого человека будет m долей 1 n , а m долей 1 n даст обыкновенную дробь m n . Следовательно, обыкновенную дробь m n можно использовать, чтобы обозначать деление m предметов между n людьми.

Полученное утверждение устанавливает связь между обыкновенными дробями и делением. И эту связь можно выразить следующим образом: черту дроби возможно иметь в виду в качестве знака деления, т.е. m / n = m: n .

При помощи обыкновенной дроби мы можем записать итог деления двух натуральных чисел. К примеру, деление 7 яблок на 10 человек запишем как 7 10: каждому человеку достанется семь десятых долей.

Равные и неравные обыкновенные дроби

Логичным действием является сравнение обыкновенных дробей, ведь очевидно, что, к примеру, 1 8 яблока отлична от 7 8 .

Результатом сравнения обыкновенных дробей может быть: равны или неравны.

Определение 6

Равные обыкновенные дроби – обыкновенные дроби a b и c d , для которых справедливо равенство: a · d = b · c .

Неравные обыкновенные дроби - обыкновенные дроби a b и c d , для которых равенство: a · d = b · c не является верным.

Пример равных дробей: 1 3 и 4 12 – поскольку выполняется равенство 1 · 12 = 3 · 4 .

В случае, когда выясняется, что дроби не являются равными, обычно необходимо также узнать, какая из данных дробей меньше, а какая – больше. Чтобы дать ответ на эти вопросы, обыкновенные дроби сравнивают, приводя их к общему знаменателю и затем сравнив числители.

Дробные числа

Каждая дробь – это запись дробного числа, что по сути - просто «оболочка», визуализация смысловой нагрузки. Но все же для удобства мы объединяем понятия дроби и дробного числа, говоря просто – дробь.

Все дробные числа, как и любое другое число, имеют свое уникальное месторасположение на координатном луче: существует однозначное соответствие между дробями и точками координатного луча.

Чтобы на координатном луче найти точку, обозначающую дробь m n , необходимо от начала координат отложить в положительном направлении m отрезков, длина каждого из которых составит 1 n долю единичного отрезка. Отрезки можно получить, разделив единичный отрезок на n одинаковых частей.

Как пример, обозначим на координатном луче точку М, которая соответствует дроби 14 10 . Длина отрезка, концами которого является точка О и ближайшая точка, отмеченная маленьким штрихом, равна 1 10 доле единичного отрезка. Точка, соответствующая дроби 14 10 , расположена в удалении от начала координат на расстояние 14 таких отрезков.

Если дроби равны, т.е. им соответствует одно и то же дробное число, тогда эти дроби служат координатами одной и той же точки на координатном луче. К примеру, координатам в виде равных дробей 1 3 , 2 6 , 3 9 , 5 15 , 11 33 соответствует одна и та же точка на координатном луче, располагающаяся на расстоянии трети единичного отрезка, отложенного от начала отсчета в положительном направлении.

Здесь работает тот же принцип, что и с целыми числами: на горизонтальном, направленном вправо координатном луче точка, которой соответствует большая дробь, разместится правее точки, которой соответствует меньшая дробь. И наоборот: точка, координата которой – меньшая дробь, будет располагаться левее точки, которой соответствует бОльшая координата.

Правильные и неправильные дроби, определения, примеры

В основе разделения дробей на правильные и неправильные лежит сравнение числителя и знаменателя в пределах одной дроби.

Определение 7

Правильная дробь – это обыкновенная дробь, в которой числитель меньше, чем знаменатель. Т.е., если выполняется неравенство m < n , то обыкновенная дробь m n является правильной.

Неправильная дробь - это обыкновенная дробь, числитель которой больше или равен знаменателю. Т.е., если выполняется неравенство undefined , то обыкновенная дробь m n является неправильной.

Приведем примеры: - правильные дроби:

Пример 1

5 / 9 , 3 67 , 138 514 ;

Неправильные дроби:

Пример 2

13 / 13 , 57 3 , 901 112 , 16 7 .

Также возможно дать определение правильных и неправильных дробей, опираясь на сравнение дроби с единицей.

Определение 8

Правильная дробь – обыкновенная дробь, которая меньше единицы.

Неправильная дробь – обыкновенная дробь, равная или бОльшая единицы.

Например, дробь 8 12 – правильная, т.к. 8 12 < 1 . Дроби 53 2 и 14 14 являются неправильными, т.к. 53 2 > 1 , а 14 14 = 1 .

Немного углубимся в размышление, почему дроби, в которых числитель больше или равен знаменателю получили название «неправильных».

Рассмотрим неправильную дробь 8 8: она сообщает нам, что взято 8 долей предмета, состоящего из 8 долей. Таким образом, из имеющихся восьми долей мы можем составить целый предмет, т.е. заданная дробь 8 8 по сути представляет целый предмет: 8 8 = 1 . Дроби, в которых числитель и знаменатель равны, полноценно заменяет натуральное число 1 .

Рассмотрим также дроби, в которых числитель превосходит знаменатель: 11 5 и 36 3 . Понятно, что дробь 11 5 сообщает о том, что из нее мы можем составить два целых предмета и еще останется одна пятая доля. Т.е. дробь 11 5 – это 2 предмета и еще 1 5 от него. В свою очередь, 36 3 – дробь, означающая по сути 12 целых предметов.

Указанные примеры дают возможность сделать вывод, что неправильные дроби возможно заменить натуральными числами (если числитель без остатка делится на знаменатель: 8 8 = 1 ; 36 3 = 12) или суммой натурального числа и правильной дроби (если числитель не делится на знаменатель без остатка: 11 5 = 2 + 1 5). Вероятно, потому такие дроби и получили название «неправильных».

Здесь также мы сталкиваемся с одним из важнейших навыков работы с числами.

Определение 9

Выделение целой части из неправильной дроби – это запись неправильной дроби в виде суммы натурального числа и правильной дроби.

Также отметим, что существует тесная взаимосвязь между неправильными дробями и смешанными числами.

Положительные и отрицательные дроби

Выше мы говорили о том, что каждой обыкновенной дроби соответствует положительное дробное число. Т.е. обыкновенные дроби – это положительные дроби. Например, дроби 5 17 , 6 98 , 64 79 – положительные, и, когда необходимо особо подчеркнуть «положительность» дроби, она записывается с использованием знака плюс: + 5 17 , + 6 98 , + 64 79 .

Если же обыкновенной дроби присвоить знак минус, то полученная запись будет являться записью отрицательного дробного числа, и мы говорим в таком случае об отрицательных дробях. Например, - 8 17 , - 78 14 и т.д.

Положительная и отрицательная дроби m n и - m n – противоположные числа.Например, дроби 7 8 и - 7 8 являются противоположными.

Положительные дроби, как и любые положительные числа в целом, означают прибавление, изменение в сторону увеличения. В свою очередь, отрицательные дроби соответствуют расходу, изменению в сторону уменьшения.

Если мы рассмотрим координатную прямую, то увидим, что отрицательные дроби расположены левее точки начала отсчета. Точки, которым соответствуют дроби, являющиеся противоположными (m n и - m n), располагаются на одинаковом расстоянии от начала отсчета координат О, но по разные стороны от нее.

Здесь также отдельно скажем о дробях, записанных в виде 0 n . Такая дробь равна нулю, т.е. 0 n = 0 .

Суммируя все вышесказанное, мы подошли к важнейшему понятию рациональных чисел.

Определение 10

Рациональные числа – это множество положительных дробей, отрицательных дробей и дробей вида 0 n .

Действия с дробями

Перечислим основные действия с дробями. В общем и целом, суть их та же, что имеют соответствующие действия с натуральными числами

  1. Сравнение дробей – данное действие мы рассмотрели выше.
  2. Сложение дробей – результатом сложения обыкновенных дробей является обыкновенная дробь (в частном случае сокращаемая до натурального числа).
  3. Вычитание дробей – действие, обратно сложению, когда по одной известной дроби и заданной сумме дробей определяется неизвестная дробь.
  4. Умножение дробей – это действие можно описать как нахождение дроби от дроби. Результат умножения двух обыкновенных дробей – обыкновенная дробь (в частном случае равная натуральному числу).
  5. Деление дробей – действие, обратное умножению, когда мы определяем дробь, на которую необходимо умножить заданную, чтобы получить известное произведение двух дробей.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

 

 

Это интересно: